Abstract

Wild’s summation formula gives an explicit expression for the solution of the spatially homogeneous Boltzmann equation for Maxwellian molecules in terms of its initial data F as a sum $f(v, t) = \sum_{n=0}^{\infty} e^{-t}(1 - e^{-t})^n Q_n^+(F)(v)$. Here, $Q_n^+(F)$ is an average over n-fold iterated Wild convolutions of F. If M denotes the Maxwellian equilibrium corresponding to F, then it is of interest to determine bounds on the rate at which $Q_n^+(F)$ tends to M in L^1. In the case of the Kac model, we prove that for every $\epsilon > 0$, if F has moments of every order and finite Fisher information, this convergence is governed by the least negative eigenvalue for the linearized collision operator. We prove that there is a decomposition of $Q_n^+(F)$ into a smooth part and a part that is small for large n. This depends in an essential way on a probabilistic construction of McKean. It allows us to circumvent difficulties stemming from the fact that the evolution does not improve the qualitative regularity of the initial data.